Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems
نویسندگان
چکیده
The objective of this study is minimizing the frequency deviation due to load variations and fluctuations renewable energy resources. In paper, a new type-2 fuzzy control (T2FLC) approach presented for (LFC) in power systems with multi-areas, demand response (DR), battery storage system (BESS), wind farms. BESS used reduce deviations caused by energy, DR utilized increase network stability fast changes. suggested T2FLC online tuned based on extended Kalman filter improve LFC accuracy coordination DR, BESS, dynamics are unknown, Jacobian extracted modeling simple multilayer perceptron neural (MLP-NN). designed evaluated through simulating 10-machine New England 39-bus test (NETS-39b) four scenarios. Simulation results verifies desired performance, indicating its superiority compared classical PI controllers, type-1 logic controllers (FLCs). mean improvement percentage about 20%.
منابع مشابه
A New Class of Decentralized Interaction Estimators for Load Frequency Control in Multi-Area Power Systems
Load Frequency Control (LFC) has received considerable attention during last decades. This paper proposes a new method for designing decentralized interaction estimators for interconnected large-scale systems and utilizes it to multi-area power systems. For each local area, a local estimator is designed to estimate the interactions of this area using only the local output measurements. In fact,...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملload frequency control in power systems using multi objective genetic algorithm & fuzzy sliding mode control
this study proposes a combination of a fuzzy sliding mode controller (fsmc) with integral-proportion-derivative switching surface based superconducting magnetic energy storage (smes) and pid tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. the goal of design is to improve the dynamic response of power systems after load demand changes. in t...
متن کاملLoad frequency control of two-area interconnected power system using fuzzy logic control approach
Power systems are composed of power units that are constantly connected to each other and the electric power flux is constantly moving between them. All systems must be implemented in such a way that not only under normal conditions but also unwanted inputs or disturbances, are applied. It also remains stable or returns to a stable name at the earliest possible time. The fundamental factors...
متن کاملDistributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer
This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3139259